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Forces are measured at both ends of rigid cylinders with span 60 cm, performing
transverse oscillations within an oncoming stream of water, at Reynolds number
Re ≈ 3800. Forced harmonic motions and free vibrations of uniform and tapered
cylinders are studied. To study free motions, a novel force-feedback control system
has been developed, consisting of: (a) a force transducer, which measures forces on
a section of a cylinder moving forward at constant speed; (b) a computer using the
measured force signal to drive in real time a numerical simulation of an equivalent
mass–dashpot–spring system; (c) a servomotor and linear table which impose, also in
real time, the numerically calculated motion on the cylinder section. The apparatus
allows very low equivalent system damping and strict control of the parametric values
and structure of the equivalent system.

Calculation of the cross-correlation coefficient between forces at the two ends of the
uniform cylinder reveals five distinct regimes as a function of the nominal reduced
velocity Vrn: two regimes, for low and high values of Vrn, and far away from the
value of VrS corresponding to the Strouhal frequency, show small correlation; two
regimes immediately adjacent to, but excluding, VrS show strong correlation, close
to 1; surprisingly, there is a regime containing the Strouhal frequency, within which
correlation is low. Free vibrations with a 40:1 tapered cylinder show that the regime
of low correlation, containing the Strouhal frequency, stretches to higher reduced
velocities, while lock-in starts at lower reduced velocities.

When comparing the amplitude and phase of the lift coefficient measured for free
and then for forced vibrations, we obtain close agreement, both for tapered and
uniform cylinders. When comparing the cross-correlation coefficient, however, we find
that it is much higher in the forced oscillations, especially for the uniform cylinder.
Hence, although the force magnitude and phase may be replicated well in forced
vibrations, the correlation data suggest that differences exist between free and forced
vibration cases.

1. Introduction
The interaction of a slender cylindrical body with a steady crossflow has been the

topic of a great amount of attention, because of the complexity of the viscous flow
problem, particularly when interacting dynamically with a structure. The problem is
significant both as a paradigm for studying bluff body–flow interaction, and as a
practical issue. Engineering applications include aeolian vibrations of transmission
lines, and marine risers and cables strumming within a current. For a wide range
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of physical parameters, vortex-induced vibration (VIV) leads to spatially extended
motions of the structure, often resulting in large dynamic stresses.

The prediction of VIV is currently based on semi-empirical methods, often em-
ploying a ‘strip theory’ approach and relying on experimental data bases, which are
obtained through a number of simplifying assumptions (Blevins 1990; Naudascher &
Rockwell 1994). Major outstanding problems include the correlation length effects,
particularly in non-uniform cylinders and sheared oncoming flows, and the effect of
multi-frequency response. Parallel experimental and numerical efforts are underway
to provide better understanding of the phenomenon and develop reliable methods
of prediction. Coutanceau & Defaye (1991) and Williamson (1996) provide recent
reviews of progress made in understanding the basic mechanisms of flow response.

The need to generate a complete experimental force data base for predicting vortex-
induced vibrations of slender structures has led to testing of cylinders undergoing
forced oscillations. Several investigators, including Bishop & Hassan (1964), Sarp-
kaya (1977), Staubli (1983), Gopalkrishnan (1992) and Gopalkrishnan, Grosenbaugh
& Triantafyllou (1992) have measured the forces on finite-span oscillating cylinders
forced in harmonic as well as multi-frequency motion. In harmonic tests the transverse
(lift) force is decomposed into two components: one in phase with velocity and the
other in phase with acceleration. The former is important in determining the range
where self-excited oscillations occur; the second is used to derive a value for the
added mass coefficient.

Predictions using forced-vibration data with a structural model have been compared
with free vibration tests (Staubli 1983; Parkinson 1989; Sarpkaya 1995): there are
parametric regions where such comparison is successful, and other regions where
discrepancies are observed. The question of whether forced cylinder experiments can
be used to predict free vibrations of cylinders is still open. For example, Griffin (1972)
compared the wakes of two identical cylinders, one self-excited and the other forced
to oscillate. He did not find differences in the global parameters of the wake, although
he noted differences in the velocity signal of the free-oscillation wake, which contained
more random oscillations. Newman & Karniadakis (1996) find through numerical
simulation differences in the wake structure of a cable forced to oscillate compared
with the wake of a self-excited cable. The explanation may be based on the dynamics
of the wake; for example, it is known (Nakano & Rockwell 1994) that amplitude
modulation is capable of altering the wake form. A freely vibrating cylinder can
have a different wake structure (and force signal) since it can deviate from a purely
harmonic motion.

In this paper, we consider forced as well as free vibrations to study the effect of
the principal parameters on the integrated force acting on a finite span cylinder, at
Reynolds number 3800. A hybrid system is developed to study free motions, employing
a closed-loop control system consisting of: a pair of force transducers measuring the
transverse forces at both ends of a test cylinder moving forward at constant speed; a
dedicated computer which uses in real-time the measured force to drive a numerical
simulation of an equivalent mass–dashpot–spring system; a servomotor and linear
table which impose, also in real-time, the numerically calculated motion to the cylinder
section. The apparatus results in an effective mass–dashpot–spring system vibrating
freely within crossflow, and allows very low effective damping.

We present new data in agreement with those of Feng (1968), Brika & Laneville
(1993), and Khalak & Williamson (1996). In addition, we use the two simultaneously
recorded end forces directly, to assess spanwise correlation of the fluid structure for
the four cases of: (a) a uniform cylinder in free vibration, (b) a 40:1 tapered cylinder
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Figure 1. Test section and carriage apparatus.

in free vibration, (c) a uniform cylinder in forced vibration, and (d) a 40:1 tapered
cylinder in forced vibration. Through the force feedback mechanism, we are able to
compare force responses in forced sinusoidal motions and free vibrations with the
same apparatus and under identical flow conditions.

2. Description of experimental apparatus
The experiments were conducted at the MIT Testing Tank Facility. The main still-

water tank has dimensions 30 m × 2.5 m × 1.2 m. As shown in figure 1, the tank is
equipped with a double-rail structure supporting a motor-driven carriage, which can
achieve speeds from 0.1 to 1.5 m s−1. The test section of the cylinder is 62 cm long
and fits into an inverted U–frame yoke assembly which hangs down from the carriage
into the water. Sensitive load cells form the junction between the cylinder and the
yoke at both ends; the ends are fitted with two circular endplates of 35 cm diameter
to ensure two-dimensional conditions and to avoid end-effects. The diameter of the
uniform cylinder is 3.17 cm, resulting in an aspect ratio of 19.2. The tapered cylinder
has the same length, but a mean diameter of 2.78 cm. During tests, the cylinder was
submerged at its average position 0.60 m below the free surface, to avoid free surface
and bottom interference effects.

The yoke and cylinder are affixed to an ALM linear lead-screw table, driven by a
Parker–Hannifin servomotor and MEI motor controller card, which provide the means
for oscillating the yoke with amplitude up to 8 cm. An on-board computer provides
trajectories for the servomotor, based on either forced sinusoids or a compliance
model. As shown in figure 2, for the latter case we drive an on-line simulation of
a compliant system with the force signals as follows: Mẍ + Bẋ + Kx = Fhydrodynamic;
s denotes the Laplace transform variable. It is important to note that the actual
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Figure 2. Force-feedback control system for free vibrations.

measured force comprises both the hydrodynamic force as well as one resulting from
the inertia of the test cylinder and its fittings. Therefore, to obtain the hydrodynamic
force in real time, we subtract from the force signal the calculated inertia force. In
this way, a wide variety of virtual masses (as well as damping and stiffness values)
can be accommodated with the same test cylinder. The uniform test cylinder has a
specific mass of 0.372, enabling the virtual specific mass, m∗ = 4M/πd2l, to be well
below 1. The tapered test cylinder has specific mass 1.33.

Although the simulation can specify in principle zero damping, in practice this is
difficult to achieve reliably. The use of a servomotor and feedback loop carries no
guarantee of zero net power flow when the simulation damping is zero, and small
timing errors can push the closed-loop system into an unstable oscillatory mode. The
lowest consistent damping ratio we have measured in air is approximately 0.013. The
minimum mass-damping parameter m∗ζ for this system is thus expected to be around
0.013 (with m∗ = 1.0), and about 0.040 for the present tests. Our apparatus achieves
a mass-damping ratio, Sg = 8π2S2Mζ/ρld2, of about 0.029, which is comparable to
that given by Khalak & Williamson (1996), and among the lowest reported. Our
apparatus allows us to carry identical end plates and is fully immersed, while it
also allows testing of different equivalent systems, which may include, for example,
nonlinear terms.

The forces are measured with two Kistler piezoelectric transducers, placed at both
ends of the test cylinder. The tests we describe are at Re = 3800, and hence the
measured forces are quite small. The resolution of these sensors is approximately
0.005 N, and they require real-time filtering because of the feedback system. We
use an analogue fourth-order Butterworth low-pass filter, with a cutoff at 22 Hz; a
digital filter applies the same phase to the inertial correction, for consistency. This
filtering imposes a phase loss of about five degrees at the nominal rate of 4.9 rad
s−1. The motor servo attains a phase loss of less than one degree over the range of
frequencies encountered, and the linear drive has a manufacturer’s specification of
five micrometers backlash. Acoustic Doppler velocimetry tests in the tank showed
that the steady forward carriage speed has fluctuations below 5% at speeds near 12
cm s−1.

A Schaevitz Linear Variable Differential Transformer (LVDT) HR 3000 with a
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linear range of ±8 cm is used to measure the imposed motion. The Kistler transducers
and the Schaevitz LVDT are operated through amplifiers located on the carriage so
as to be very close to the sensors. The high-level analogue voltage outputs are sent
to both the simulation/motion-control computer on the carriage, and a separate
data-collection computer located away from the tank. The hardware has also been
used in Hover, Miller & Triantafyllou (1997).

In processing the data, we break up the records into bins of one to two oscillations
in length, for computing the inner products listed below. We thus obtain mean
values as well as sample standard deviations (RMS value); a high standard deviation
indicates fluctuation over the course of the run, whereas a low value suggests that the
quantity is stable. The following parameters are used to describe our results:

(a) The nominal reduced velocity, based on the structural vibration frequency:
Vrn = U/(fnd).

(b) The true reduced velocity, based on the observed frequency of vibration: Vr =
U/(fod).

(c) The lift-coefficient in phase with velocity, defined as

Clv =
Fl

1
2
ρdLU2

,

where Fl is the lift force in phase with velocity, computed as an inner product of
(inertia-corrected) force with velocity. For the tapered cylinder, we base lift coefficients
on the local diameter at each end.

(d) The lift coefficient in phase with acceleration, Cla, defined similarly. The added
mass is positive if Cla is negative.

(e) The phase by which the force leads the position, φ.
(f) The cross-correlation between forces measured at the two ends of the test

cylinder, Fc. The sample standard deviation of this correlation coefficient, based on
at least sixty bins, we denote as µ. A correlation coefficient near 1 suggests uniform
conditions in the primary vortical patterns of the wake across the span of the cylinder.

Tests were repeated in duplicate or triplicate.

3. Free vibrations of a uniform cylinder
Free-vibration tests were conducted at nominal reduced velocities Vrn between 1 and

40, although we concentrate primarily on results for Vrn less than 10.† In this regime,
our apparatus produces an amplitude curve that matches Khalak & Williamson’s
(1996) curve (for m∗ζ = 0.013) very closely.

Figure 3 is a composite figure showing as functions of Vrn: (a) the average one-
tenth highest amplitude of response, (b) the force correlation coefficient and standard
deviation, (c) the phase between force and motion, (d) the lift coefficient in phase
with acceleration, (e) the lift coefficient in phase with velocity, and (f) the ratio of
frequency of oscillation to natural frequency. Since two force signals are measured,
one from each end of the cylinder section, plots (c–f) show two points for each
value of Vrn. The two data points are in most cases quite close to each other, often
indistinguishable, but there are notable exceptions. The sum of the two lift coefficients
in phase with velocity, pertaining to power flow, must be near zero for free vibrations,

† High nominal reduced velocities correspond to an extraordinarily high compliance: on the
order of 1 m N−1 in the present system. Due to the high compliance of very long cables, testing in
this regime may be valuable.
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Figure 3. Response of a freely vibrating uniform cylinder as a function of reduced velocity:
(a) amplitude to diameter ratio, A/d; (b) correlation coefficient Fc and standard deviation µ between
forces measured at the ends; (c) phase angle φ (degrees) between force and displacement; (d) lift
coefficient in phase with acceleration Cla; (e) lift coefficient in phase with velocity Clv; (f) frequency
of oscillation over natural frequency fo/fn.

since the structural damping is small. This constraint is generally met; however, the
individual lift coefficients are not zero in certain regimes, particularly at reduced
velocity values in the range 5 < Vrn < 6. This range contains the Strouhal frequency,
and hence is very important for applications.

A sharp phase change is noted in figure 3(c), characteristic of the transition
from the upper to the lower hysteretic branch. The lift coefficient in phase with
acceleration, which has the opposite sign to the added mass force, is negative at low
reduced velocities, reaching a minimum value of nearly −3.0 at Vrn = 4.0, where
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Figure 4. Force correlation coefficient Fc (◦) and standard deviation µ (×), for free-vibration tests
with the uniform cylinder.

extreme sensitivity to small variations in Vrn is noted. Beyond this reduced velocity,
Cla becomes smaller, first reaching a local maximum of about 0.4, and eventually
tapering off to zero.

There is a direct relation between variations in amplitude, lift, and phase, and
the calculated correlation coefficients of the measured forces at the two ends of the
cylinder. We have identified five different regimes as a function of Vrn, labelled I–V,
and shown in figure 4, which is an expanded version of figure 3(b), providing finer
detail. The end forces show excellent correlation in the ranges: II for Vrn = 2.0–5.0,
and IV for Vrn = 6.25–8.75. Region II corresponds to a well-correlated ‘2S’ response,
while region IV is a correlated ‘2P’ regime (Williamson & Roshko 1988). At the
lower reduced velocities (region I) the correlation coefficient is close to a value of
0.85, while for high Vrn values (region V) the correlation is typically negative, with
increased scatter.

Whereas it is anticipated that the correlation will be poor in regions I and V, far
away from the Strouhal frequency, it is surprising to find poor correlation also in
region III, for Vrn = 5.0–6.25, which contains the Strouhal frequency. The correlation
dips to a value of zero, with a corresponding increase in the value of the standard
deviation µ.

In figure 5, we show amplitude and force power spectra at values of Vrn correspond-
ing to the lower and upper limits of each of the five regions. Region I contains forcing
at the Strouhal shedding rate, and a second harmonic is just visible, growing with Vrn.
The transition from region I to II results in a sharpening of the displacement peak,
and a shift in the higher harmonics of the forces. The lift in phase with acceleration
reaches its extreme value in the middle of the coherent ‘2S’ region (II). The transition
from region II to III appears through a very mild amplitude drop, consistent with
a hysteretic jump occurring there; but otherwise has no visible effect on the the
spectra. Synchronization of the observed frequency to the structural mode occurs at
Vrn = 6.0, and across region III the peaks broaden mildly. Region IV is accompanied
by a renewed narrowing of the force spectra, which degenerates, however, as the
fixed-cylinder shedding frequency reappears in region V. The displacement decays
into a slow, broadband meander, consistent with very small restoring forces.

In the correlated regions II and IV, a strong similarity between the force signals
from the two ends of the cylinder exists. Elsewhere, differences can be observed.
Figure 6 demonstrates a good correlation of modulated end–forces at Vrn = 4.0; in
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Figure 5. Amplitude and force power spectra of the uniform cylinder, at boundaries of the five
regions shown in figure 4.

this case the force modulation follows the displacement modulation. On the other
hand, figure 7 shows a different situation at Vrn = 5.5, within region III: the two force
signals are different in shape and phase, and have little apparent relation to the large,
narrow-band displacement.

Figure 4 is a central result of the present investigation, showing that the forcing
along the uniform cylinder section is not correlated for free vibrations close to the
Strouhal frequency.

4. Free vibrations of a 40:1 tapered cylinder
We conducted tests for similar parametric values with a 40:1 tapered cylinder,

having mass ratio 4.0. The ratio τ = 40: 1 represents the ratio of the cylinder length l
to the difference in diameters between the two ends, dmax, dmin, i.e.

τ =

∣∣∣∣ l

dmax − dmin

∣∣∣∣ .
Figure 8 is a composite figure for the tapered cylinder results, similar to figure 3 for

a uniform cylinder. As shown in figure 8, broad variations from the uniform-cylinder
results exist. In general, an averaging with respect to reduced velocity seems to occur,
as also noted in Humphries (1987). The hysteretic jump near Vr = 6.0 has apparently
vanished and the force correlation varies more gradually.

The force correlation results for the tapered cylinder are shown in more detail in
figure 9, where the low-correlation regime has shifted to the range in Vrn between 6
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Figure 6. Displacement and force signals from each end of the cylinder obtained for Vrn = 4.0
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Figure 7. Displacement and force signals from each end of the cylinder at Vrn = 5.5 (region III).

and 9, with a gradual transition. Uniform-cylinder force correlations, by comparison,
appear to be alternately well-correlated or poorly correlated, with almost discontinu-
ous transitions. The lowest correlation noted for a tapered cylinder is 0.25, compared
with 0 for a uniform cylinder.

In the plots of figure 8 force normalizations are with respect to the two end
diameters of the section, so that nearly zero power flow (sum of the two end forces)
again holds, when each coefficient is multiplied by its appropriate diameter. The lift
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Figure 8. The tapered cylinder free response characteristics: (a) amplitude to diameter ratio, A/d;
(b) correlation coefficient Fc and standard deviation µ between forces measured at the ends; (c) phase
angle φ (degrees) between force and displacement; (d) lift coefficient in phase with acceleration Cla;
(e) lift coefficient in phase with velocity Clv; (f) frequency of oscillation over natural frequency
fo/fn. For φ, Cla, and Clv , · and ◦ denote the narrow and wide ends of the cylinder, respectively.

coefficients show clear separation between forces acting at the narrow end (small
diameter) and the wide end (large diameter) of the test cylinder. Lift in phase with
acceleration at the narrow end follows a path similar to the uniform case, with the
exception that the minimum value is only −1.3 (compared with −3.0). At the wide
end, a minimum value of −1.9 is observed at Vrn = 4.5. At Vrn = 3.5, a discontinuity
in Cla is evident, although some scatter in the data exists below Vrn = 4.0.

The tapered cylinder does not follow the synchronization curve of the uniform
cylinder. Below Vrn = 3.0, an extremely high sensitivity to the structural mode exists;
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Figure 10. Amplitude and force power spectra for the tapered cylinder.

it is at this point that lock-in first begins, at about 90% of the structural frequency.
As Vrn increases, the observed frequency moves gradually up to a value of about 1.2,
which is also the final value observed in figure 3.

Figure 10 shows displacement and force spectra for a range of reduced velocities
between 1 and 10, which was also covered in the uniform cylinder case. Starting at the
lower end, the force signals occupy two distinct and broad frequency ranges, consistent
with two different fixed-cylinder shedding rates resulting from two diameters. The
wake forces in this region are reasonably well-correlated. Some signature of the
second harmonic, again broadband, emerges at Vr = 2.0, while the displacement is
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Figure 11. Mesh plot of Clv for forced oscillations, with points from free-oscillation tests (∗).

largely unchanged. The spectral content of the displacement sharpens and aligns
closely with that of the forces, at Vrn = 3.0. At this point also, the correlation between
forces increases. Both the displacement and force spectra remain remarkably narrow-
band for all reduced velocities between 4.0 and 7.0. Beyond this range, a broadening
of the force spectra occurs; in contrast, the uniform cylinder had recovered the
fixed-cylinder shedding rate in this higher range.

5. Forced oscillations
Forced vibration tests were conducted over the same ranges as for the free vibra-

tions, to compare the properties of the measured lift forces between the two sets of
experiments.

5.1. Uniform cylinder

Forced vibrations can be conducted for any combination of {Vr , A/d}, providing
results for the complete space, whereas free vibrations depend on the mass, damping,
and stiffness properties of the cylinder. In our tests, we varied only the stiffness
parameter, and thus, when the free-vibration results are plotted on the {Vr , A/d}-
space, they form a curvilinear path. Below lock-in values of Vrn, the true reduced
velocity Vr takes a roughly constant value, since the observed frequency does not vary
with the structural frequency.

In figures 11–14, we show lift coefficient topographies, based on the extensive tests
performed by Gopalkrishnan (1992), combined with our own current forced-vibration
tests. Gopalkrishnan measured the forces at one end of the cylinder at Re = 10 000;
however, we did not notice substantive deviations from our forced tests at Re = 3800.
Also shown in the figures are data points from the free-vibration tests; two lift
coefficients are shown per experiment, corresponding to the forces measured at the
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Figure 12. Contour plot of forced-oscillation Clv data, with an overlay of free-vibration results (∗)
and wake structure boundaries defined by Williamson & Roshko (1988) (· · ·).

2

0

–2

–4
20

15

10

5

0
1.2

1
0.8

0.6
0.4

0.2
0

A/d

Vr

Figure 13. Mesh plot of Cla for forced oscillations, with points from free-oscillation tests (∗).

two ends of the cylinder. A few of the points lie below the mesh, and so are hidden in
the three-dimensional plots. Viewed on the (Vrn, A/d)-plane, the free vibrations follow
the trajectory of figure 3.

In the case of lift in phase with velocity, shown in figures 11 and 12, the free-
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vibration results generally follow the zero-lift contour of the forced data, except
within region III (defined in figure 4), where phase measurements are somewhat
scattered. On the mesh, the low-Vrn points traverse a fairly steep face along Vr ' 5.5,
from amplitude zero to about 0.8d. The contour lines experience a sharp bend at this
point, consistent with the decrease of free-vibration amplitude to 0.6d for Vr > 6.0.
The free-vibration points settle near A/d ' 0.15 at higher reduced velocities.

Regarding the lift in phase with acceleration, the free-vibration Cla value becomes
strongly negative as Vrn increases, and initially follows a shallow fold (or ‘valley’) on
the forced vibration mesh. This is shown in figures 13 and 14. The points then climb a
very steep surface on the mesh, reach the crest with slightly positive value, and finally
decrease to a value of zero for large Vr . Overall, the agreement between forced- and
free-vibration Cla values is excellent.

The curves defined by Williamson & Roshko (1988) are also shown on the contour
plots of figures 12 and 14. Part of the ‘2S’ to ‘2P’ transition line overlaps with the
free-vibration data path along Vr ' 5.5, and is near the zero contour of Clv , for
A/d < 0.5. This transition boundary also follows the same shallow valley in the Cla
contour plot. Finally, the right-hand boundary of the ‘2P’ region passes through a
‘knee’ in the free-vibration amplitude response curve, at Vr = 8.0 and A/d = 0.6, as
also found in Brika & Laneville (1993).

There is good agreement between the two components of the force coefficient, Cla
and Clv , measured in free and forced vibrations. However a basic difference exists
when the end forces are considered: the force signals have much better correlation in
the forced-oscillation tests than in the free-vibration tests. Table 1 provides forced-
vibration values for the force correlation coefficient, Fc, in the neighbourhood of
region III. The smallest correlation coefficient for each column is shown in bold
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Vr: 4.5 4.75 5.0 5.3 5.55 5.9 6.3 6.75

A/d: 0.9 0.976 0.944 0.993 0.992 0.991 0.990
0.8 0.993 0.989 0.837 0.920 0.989 0.988 0.984 0.980
0.7 0.998 0.994 0.996 0.856 0.937 0.975 0.968 0.955
0.6 0.999 0.999 0.999 0.998 0.873 0.957 0.948 0.953
0.5 0.999 0.999 0.999 0.999 0.995 0.950 0.939 0.942
0.4 0.999 0.999 0.999 0.999 0.978 0.914 0.951 0.964
0.3 0.998 0.998 0.998 0.995 0.997 0.976 0.842
0.2 0.994 0.995 0.994 0.994 0.927 0.969 0.806

Table 1. Forced-oscillation values of Fc
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Figure 15. Forced-oscillation tests with a 40:1 tapered cylinder. For Clv and Cla, ∗ denotes the
narrow end of the cylinder, ◦ denotes the wide end.

lettering: the lowest coefficients are in the range of 0.84 to 0.87, always much higher
than the lowest free-vibration coefficients, which were in the range 0–0.5.

5.2. 40:1 tapered cylinder

We performed a set of forced vibrations with the 40:1 tapered cylinder to explore
the mapping of forces between free and forced vibrations. Figure 15 provides a
summary of the measured forces for two A/d values of 0.6 and 1.1, and a range of
reduced velocity Vr . For each amplitude three plots are shown, providing (a) the lift
coefficients (at the two ends of the cylinder section) in phase with velocity, Clv; (b)
the lift coefficients in phase with acceleration, Cla; and (c) the force cross-correlation
coefficient Fc and standard deviation µ. For both amplitudes, both components of
the lift coefficients are strongly negative at low Vr , but increase to near zero above
Vr = 7.0. In contrast with the uniform-cylinder results, there were no tests yielding
positive lift coefficients.

Although there are still differences, the force correlation coefficient for the tapered
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cylinder performing forced oscillations matches the free-vibration results better than
the uniform cylinder. This is especially true at A/d = 0.6, near the maximum amplitude
of the free-vibrations. A comparison of figure 15 with figure 9 shows the closer
similarity of the two sets of experiments. Transition occurs at the same reduced
velocity (' 5.75); the primary difference is the minimum value for the correlation
coefficient Fc, which is equal to 0.28 for the free-vibration tests, and 0.58 for the
forced-vibration results.

As in the case of the uniform cylinder, in forced-oscillation tests larger imposed
amplitudes tend to correlate the forces better.

6. Discussion
The use of a force-feedback closed-loop control system to effect an equivalent

system with desired properties solves several of the major problems associated with
free-vibration tests.
• The apparatus allows for low-mass tests; the only real limit is the mass of the

test cylinder, which dictates the magnitude of the inertial correction. This inertial
correction is inherently destabilizing, so the critical constraint is that M − M̄ > 0.
• Force and displacement measurements involve various fittings and wiring. By

using a servo-controlled approach, the effects of these connections on the dynamic
response of the system can be eliminated. One limitation of the system is the small
phase loss incurred by filtering the force signals. However, the data, which match
previously reported results closely, suggest that this has only minor effects.
• The apparatus allows for conducting both forced- and free-vibration testing

under identical conditions, since only a software change is required. The nature of
the feedback system, as noted previously, can also provide multi-mode and nonlinear
structural models: preliminary work with multi-mode models has been reported by
Hover et al. (1997).

Recording the two cylinder end forces separately allows for a study of distributed
force correlation and hence, indirectly, flow-correlation along the section used. The
loss of force correlation of free vibrations in region III, lying between region II,
associated with ‘2S’ shedding, and region IV, associated with ‘2P’ shedding, has a
plausible explanation. In region III, repeated switching between upper and lower
branches of the amplitude hysteresis loop may occur, accompanied by non-uniform
flow conditions along the span of the cylinder. Hence, whereas there is no discontinuity
in the amplitude of the lift coefficient during ‘2S’ to ‘2P’ transition, there is phase
transition, causing loss of correlation. This view is reinforced by the results in Techet,
Hover & Triantafyllou (1998) which show flow visualization at Reynolds numbers in
the range 400 to 1500, behind a 40:1 tapered rigid cylinder. It is shown that under
certain conditions a hybrid mode forms, consisting of a ‘2S’ pattern along part of
the cylinder span having the larger diameter, connected through a vortex split to
a ‘2P’ pattern along the small diameter part. The pattern is repeatable within one
cylinder diameter from cycle to cycle. Our results herein, reporting loss of correlation
for parametric ranges close to those in Techet et al. (1998), lead to the tentative
explanation that a spanwise ‘2S’ to ‘2P’ transition is the cause of force correlation
loss. This effect may be stronger in free vibrations of uniform cylinders, when small
variations in frequency and amplitude of oscillation can cause the vortex split to shift
location more dramatically along the span.

The correspondence between Cla in forced- and free-vibration tests is remarkably
close, and indicates that the added mass component of VIV can be parametrized
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successfully from forced experiments. Similarly, zero power flow in the forced os-
cillations holds on a contour which is fairly close to the free-vibration trajectory,
noteworthy because forced vibrations cannot enforce zero power flow. Beyond these
similarities, however, forced vibrations seem to exert greater control on the mode
transition, resulting in a smaller loss of correlation: the forced vibrations preserve
correlation of the two end forces better than the free vibrations. In the free-vibration
tests, some runs in region III approach zero correlation, but the lowest value in table
1 is 0.837. Additionally, the path of minimum correlation, obtained from table 1,
follows a narrow valley on the (A/d,Vr) plane, which does not coincide with the path
of the free-vibration trajectory (see, for example, figure 12). This further differentiates
the free- from the forced-vibration results.

7. Conclusions
A novel force-feedback control system was used to explore free and forced vibrations

of uniform and tapered rigid cylinder sections, providing measurements of the forces
at both ends of the section. Cross-correlation between the two end forces shows
distinct regions of high- and low-correlation; a region of low force correlation (region
III in figure 4) is found around the Strouhal frequency.

Free-vibration tests of a uniform cylinder with low equivalent structural damping
yield the amplitude response as a function of nominal reduced velocity, in agreement
with previous results (Khalak & Williamson 1996). In region III, for the range of
reduced velocities between 5.0 and 6.25, correlation coefficients as low as zero are
observed, coincident with abrupt phase changes between tests. Comparison with
forced vibration data shows good agreement of the lift force coefficients in phase
with velocity Clv and in phase with acceleration Cla. The correlation coefficient for
forced vibrations in region III, however, drops only to a value of 0.83, showing better
correlated force (and flow) conditions along the span.

Free- and forced-vibration tests of tapered rigid cylinders with 40:1 taper also
show good agreement in the values of the lift coefficients Clv and Cla, while the force
correlation values agree better than in the case of the uniform cylinder. Differences
between the uniform and tapered cylinder free-vibration results are also noted, in-
cluding an expanded region of low correlation around the Strouhal frequency, with a
more gradual transition from good to poor correlation. This gradual variation applies
to other parameters as well, such as phase, in contrast with the uniform cylinder
results. Furthermore, the tapered cylinder free vibrations allow lock in to occur at
lower values of Vrn than for the uniform cylinder.
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(Ocean Engineering Division), under contract N00014-95-1-0106 and monitored by
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